4 research outputs found

    An FPGA architecture design of a high performance adaptive notch filter

    Get PDF
    The occurrence of narrowband interference near frequencies carrying information is a common problem in modern control and signal processing applications. A very narrow notch filter is required in order to remove the unwanted signal while not compromising the integrity of the carrier signal. In many practical situations, the interference may wander within a frequency band, in which case a wider notch filter would be needed to guarantee its removal, which may also allow for the degradation of information being carried in nearby frequencies. If the interference frequency could be autonomously tracked, a narrow bandwidth notch filter could be successfully implemented for the particular frequency. Adaptive signal processing is a powerful technique that can be used in the tracking and elimination of such a signal. An application where an adaptive notch filter becomes necessary is in biomedical instrumentation, such as the electrocardiogram recorder. The recordings can become useless when in the presence of electromagnetic fields generated by power lines. Research was conducted to fully characterize the interference. Research on notch filter structures and adaptive filter algorithms has been carried out. The lattice form filter structure was chosen for its inherent stability and performance benefits. A new adaptive filter algorithm was developed targeting a hardware implementation. The algorithm used techniques from several other algorithms that were found to be beneficial. This work developed the hardware implementation of a lattice form adaptive notch filter to be used for the removal of power line interference from electrocardiogram signals. The various design tradeo s encountered were documented. The final design was targeted toward multiple field programmable gate arrays using multiple optimization efforts. Those results were then compared. The adaptive notch filter was able to successfully track and remove the interfering signal. The lattice form structure utilized by the proposed filter was verified to exhibit an inherently stable realization. The filter was subjected to various environments that modeled the different power line disturbances that could be present. The final filter design resulted in a 3 dB bandwidth of 15.8908 Hz, and a null depth of 54 dB. For the baseline test case, the algorithm achieved convergence after 270 iterations. The final hardware implementation was successfully verified against the MATLAB simulation results. A speedup of 3.8 was seen between the Xilinx Virtex-5 and Spartan-II device technologies. The final design used a small fraction of the available resources for each of the two devices that were characterized. This would allow the component to be more readily available to be added to existing projects, or further optimized by utilizing additional logic

    A depauperate immune repertoire precedes evolution of sociality in bees

    Get PDF
    Background Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. Results We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. Conclusions The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts
    corecore